Hybrid Approach for Time Series Prediction using Neural Networks and Simulated Annealing
نویسندگان
چکیده
This paper proposes a new hybrid approach which combines simulated annealing and standard backpropagation for optimizing Multi Layer Perceptron Neural Networks (MLP) for time series prediction. Experimental tests were carried out on four simulated series with known features and on the Sunspot series. The results have shown that this approach selects the appropriate time series lags and builds an MLP with the minimum number of hidden neurons required for achieving good performance on the task. The performance attained was better than some results recently reported for hybrid systems combining Genetic Algorithms (GA) and MLPs for the same purpose
منابع مشابه
MLP Neural Networks Optimization through Simulated Annealing in a Hybrid Approach for Time Series Prediction
This paper proposes a new hybrid approach which combines simulated annealing and standard backpropagation for optimizing Multi Layer Perceptron Neural Networks for time series prediction. Experimental results have shown that this approach selects the appropriate time series lags and builds an MLP with adequate number of hidden neurons required for achieving good performance on the task. The per...
متن کاملVehicle's velocity time series prediction using neural network
This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005